
 Shiraz Atzmon, Maor Nave, Shai Isaacs, Alycia Sasson

A Comparison of ANN, ANN with Calculated Attributes, and

CNN

 Shiraz Atzmon1, Maor Nave1, Shai Isaacs1, and Alycia Sasson1

1 Department of Management, Bar-Ilan University, Ramat Gan, Israel

ABSTRACT
Machine learning (ML) is the process by which computers

develop pattern recognition, where they can learn and then

create predictions based on their learning. The level of

supervision is what distinguishes one ML method from the

other. There are four primary learning models: supervised

learning, unsupervised learning, semi-supervised learning,

and reinforcement learning. Many ML models function in a

way that resembles human neural functionality. In our

research and this article, we will focus on the supervised

learning (SL) method to evaluate the efficiency and

effectiveness of two different learning models, Artificial

Neural Networks (ANN) and Convolutional Neural Networks

(CNN).

Our research intends to determine which method is more

cost-effective, and compare both methods based on multiple

relevant factors, also for assisting in the decision between

methods based on use cases. To the best of our knowledge,

there are no published comparison articles between ANN

and CNN, and no official research evaluates both methods on

the same data set. . Most of the information is found on

online blogs and forums that have no academic credibility .In

our research, we used Python to compare the models, using a

regular CPU and not any graphic card. We found that CNN is

better in all criteria than ANN, with or without adding

attributes. We also observed that the ANN model

significantly improves once attributes are added- although it

negatively affects its processing time.

KEYWORDS

CNN, ANN, attributes, TensorFlow, ML one_hot_encodeing.

1. INTRODUCTION
ML is a sub-concept of artificial intelligence describing the

process of computational learning. ML algorithms are

designed to allow computers to make decisions, predictions,

and insights based on given information. The process

attempts to mimic the human thought process, and some are

built similarly to the human neural systems. ML algorithms

build a model based on sample data (training data) to make

predictions or decisions without being explicitly

programmed. [1]

ML is divided into four major categories:

1. Supervised learning - the computer is presented with

example inputs and desired outputs (the training set). The

goal is to learn a general rule that applies to a statistically

sufficient majority of the data, then apply that rule to a new

data set and generate the outputs autonomously.

2. Unsupervised learning - No labels are given to the learning

algorithm; the algorithm is designed to find patterns and

create rules based on the observed set.
3. Semi-supervised learning - a combination of the two

former methods, where some outputs are given; there is still

a requirement to develop new rules and find patterns in the

set.

4. Reinforcement learning - A computer program interacts

with a dynamic environment in which it must perform a

specific goal. In the navigation process while attempting to

reach the desired output, the algorithm is given feedback

(reward), which it tries to maximize.

1.1. NN
The primary method to apply ML is using neural network

(NN) algorithms. These algorithms imitate human brain

activity, so the terminology used to discuss them is also

similar to biological terminology. In our research, we wanted

to compare two types of NN- ANN, and CNN on the same

dataset to determine which is superior to the other.

Neural Networks (NNs) use split tests to analyze the data;

thus, the primary data set is divided into two datasets - one

for training and one for testing. Each dataset has X and Y

variables, where the independent variables are called (x), and

the dependent variables are called (y).

Each group of variables is also divided into training and

testing sets, each having a designated label: X train, Y train, X

test, Y test. The algorithm calls each variable for its cause- the

training process or the testing run. [2]

1.2. ANN
In our research, we compared ANNs with CNNs. Artificial

neural networks (ANNs) use weights and an activation

function in the bulk of their activity. Namely, ANNs simulate

the brain’s and nervous system’s electrical activity, where

processing elements (perceptrons) are connected to other

processing elements. Typically, the perceptrons are arranged

in a vector or layer, with the output of one layer serving as

another layer’s input. The perceptrons are multiplied by their

weights, and the learning itself is based on these weights. [3]

 (Figure 1)

Figure 1  Demonstration of basic layers of

preceptrons in ANN model

 Shiraz Atzmon, Maor Nave, Shai Isaacs, Alycia Sasson

All the weight-adjusted input values to a perceptron are then

aggregated using a vector to scalar function such as

summation (i.e., y = Σwijxi), averaging, input maximum, or

mode value to produce a single input value to the perceptron.

Once the input value is calculated, the perceptron uses a

transfer function to produce its output and the input signals

for the subsequent processing layer. The transfer function

transforms the perceptron’s input value. [4]

Typically, this transformation involves using a sigmoid,

hyperbolic-tangent, or other nonlinear function. The process

is repeated between layers of perceptrons until the neural

network produces a final output value or vector of values.

ANNs consist of three main layers: Input, Hidden, and Output.

At the input layer, the data is inserted. In the hidden layer, it

is processed and transformed and moves to the output layers

where it is displayed. This article discusses an ANN that uses

the supervised learning model. In this type of machine, the

dataset used to determine the rules is divided into two

groups: training and testing. The machine then studies the

data in the training set and applies it to the testing set. The

correctness of the result determines the machine’s accuracy

level. [2]

1.2.1 ANN ATTRIBUTES ADDITION
In our research, we wanted to check if adding attributes to

the ANN model could improve its performance, and we

proved it does. We added five attributes:

1) Minimum RGB

2) Maximum RGB

3) Average Red

4) Average Green

5) Average Blue

1.3. CNN
Convolutional Neural Network (CNN) is a Deep Learning

algorithm that can take an input image, assign importance

(learnable weights and biases) to various objects in the

image, and differentiate one from the other. CNNs leverage

principles from linear algebra, specifically matrix

multiplication, to identify patterns within an image. They

have three main types of layers: The Convolutional layer,

Pooling layer, and Fully-connected (FC) layer. The

convolutional layer is the first layer of a convolutional

network. While additional convolutional layers or pooling

layers can follow convolutional layers, the fully-connected

layer is the final layer.

With each layer, the CNN increases complexity, identifying

greater portions of the image. Earlier layers focus on simple

attributes, such as colors and edges. As the image data

progresses through the layers of the CNN, it starts to

recognize larger elements or shapes of the object until it

finally identifies the intended object. [5]

The convolutional layer is the core building block of a CNN,

and it is where the majority of computation occurs. It

requires a few components: input data, a filter, and an

attribute map. For example, in a color image made up of a

matrix of pixels in 3D, the input will have three dimensions—
height, width, and depth—which correspond to RGB in an

image. A kernel (or a filter) is the detecting power of the

machine. It will move across the receptive fields of the image,

checking if the attribute is present. This process is known as

convolution. [6]

The attribute detector is a two-dimensional (2-D) array of

weights representing part of the image. While they can vary

in size, the filter size is typically a 3x3 matrix; this also

determines the size of the receptive field. The filter is then

applied to an image area, and a dot product is calculated

between the input pixels and the filter. This dot product is

then fed into an output array. Afterward, the filter shifts by a

stride, repeating the process until the kernel has swept across

the entire image. The final output from the series of dot

products from the input and the filter is known as an

attribute map, activation map, or a convolved attribute. [7]

The pooling layer reduces the number of parameters in the

input by sweeping another filter across the entire input, only

that this filter does not have any weights. Instead, the filter

applies an aggregation function to the values within the

receptive field, populating the output array. Pooling can be

done in two primary ways:

1) Max pooling: As the filter moves across the input, it

selects the pixel with the maximum value to send to the

output array.

2) Average pooling: As the filter moves across the input, it

calculates the average value within the receptive field to

send to the output array.

In the Fully-connected layer, each node in the output

layers is connected directly to a node in the previous

layer. This layer performs the classification based on

attributes extracted through the previous layers and

their different filters. [8]

(Figure 2 & Figure 3)

Figure 2  Demonstration of the network's convolution

methodology.

Figure 3  Demonstration of summation-based kernel filtering

and pooling methodology.

 Shiraz Atzmon, Maor Nave, Shai Isaacs, Alycia Sasson

1.4. ONE HOT ENCODING VECTOR
In our research, we used One hot encoding, which is the

process of converting categorical data variables so they can

be provided to ML algorithms to improve predictions. This

encoding is done to prepare the data for the ML model and

make it easier for the machine to process and compare it to

other data. Categorical label values are transformed into

numerical data and can be analyzed using mathematical and

statistical evaluations. With one hot encoding, we convert

each categorical value into a new column where it is assigned

with a binary value- 1 or 0. Each value is represented as a

binary vector. One hot encoding enables better exploitation of

computation power and consequently better performance

time. (Figure 4) [9]

1.5. ACTIVATION FUNCTIONS
We have used several activation functions in different layers

of our model. Both the ANN and the CNN use rectified linear

activation function (ReLu), a linear function that will output

the input directly if it is positive; otherwise, it will output

zero. In the last layer of our ANN model, we used the SoftMax

function, a generalization of the logistic function to multiple

dimensions. It normalizes the network’s output to a

probability distribution over the predicted output classes. On

the other hand, in our CNN model, we used the Sigmoid

activation function in the last layer. A sigmoid function is a

bounded, differentiable, real function defined for all real

input values. It has a non-negative derivative at each point

and exactly one inflection point. Generally speaking, when a

model has a Pooling process in it, it is better to use SoftMax,

and when it does not, Sigmoid.

1.6. DEVELOP ENVIRONMENT & DATA SET
Our research was done in the developing environment

Spyder and coded in Python. Spyder is an open-source

environment written in Python designed for scientists,

engineers, and data analysts. Python is the common

programming language in the field of AI and ML. We used

CIFAR-10 as our tested dataset. CIFAR-10 is a collection of

60,000 32x32 color images in 10 different classes: airplanes,

cars, birds, cats, deer, dogs, frogs, horses, ships, and trucks.

There are 6,000 images of each class.[10]

Each model generated a classification report after each run.

The report includes several variables that assist in evaluating

the model: accuracy, recall, and precision. We also added a

run-time value. The accuracy parameter shows what

percentage of the outputs was correct, recall is the ratio of

true positives to the sum of true and false negatives, precision

is the ratio of true positives to the sum of true and false

positives. Each can teach different things about the model and

its effectiveness.

Before each model is run, cleaning the data and preparing it

for the process is necessary. To do so, we used functions to

explore the entire set and check the validity of each variable.

We ensured no missing or damaged data and that each class

of elements from CIFAR-10 contained the same number of

valid images. The model preparation was also done ahead,

including the splitting into train and test datasets. The results

show with statistical significance that the CNN model is

superior to the ANN model in image identification and that

adding attributes to the ANN model improves its

performance.

2. LITERATURE & RELATED WORK
ANNs are mentioned and discussed in informal

communication channels more than they are mentioned in

academic literature. There are many articles regarding ANNs

as a novel notion, ideology, and technical game-changer, but

not as many focus on the scientific aspect of it. Maind and

Wanker elaborated on the ANN method, yet their study from

2014 lacks scientific explanations. A more recent paper is

more precise. A group of researchers from Malaysia and

Nigeria [11] referred to ANNs as statistical data models and

gave further explanations of ANNs, as well as on CNNs. They

discussed the use of ANNs in Picture Recognition problems

and described how the machine works with technical

terminology. Clearly, more research is needed to improve

ANN’s in significant ways and allow interdisciplinary

integration. Singh and Banerjee (2019) [12] described the

notion and methodology of a perceptron, referred to ANNs,

and described them as multilayer perceptrons. Numerous

studies are written on the use of CNNs for several causes and

in several disciplines, such as microorganism image analysis,

defect detection of 3C in products, and Brain Tumor

segmentation. “Artificial Neural Networks (ANNs) are computational

processing systems heavily inspired by how biological

nervous systems (such as the human brain) operate. ANNs

are comprised of a high number of interconnected

computational nodes (referred to as neurons), which work

entwine in a distributed fashion to collectively learn from the

input to optimize its final output.” (O’Shea and Nash,2015, pp

1). [13] O’Shea and Nash further defined CNNS as “analogous

to traditional ANNs in that they are comprised of neurons

that self-optimize through learning. Each neuron will still

receive input and perform an operation (such as a scalar

product followed by a nonlinear function) - the basis of

countless ANNs.

From the input raw image vectors to the final output of the

class score, the entire network will still express a single

perceptive score function (the weight). The last layer will

contain loss functions associated with the classes, and all of

the regular tips and tricks developed for traditional ANNs still

apply.” (pp 2).

Ihme and Pitsch [14] referred to the polling process and

described it as follows: “Polling is conducted in three steps

(Audet & Dennis, 2000):

Figure 4  One hot encoded vector manipulation

example.

https://d1wqtxts1xzle7.cloudfront.net/33824098/Research_Paper_on_Basic_of_Artificial_Neural_Network-with-cover-page-v2.pdf?Expires=1653505695&Signature=chwDieBElebrRfURLVkP~IosG2znzj1KBqNj15erJv-RZHTKygP6EzEttuWgo9jleBbq0Sbk-hhkFqM0HzJcSfUxZzSbTJaC4Xipupv2ZRTjx-89cEZtIgCP26sBiT6U53URLDHdeWamJdk6uI9bU0jCTcW480SEub9B6-bOlKJAuJV4w9B-Ml6Ha8zB51zQD-38BxosJXIwcdbEBqIK88zGwV8CxiM-1E5-pkrzzSpwfBLKTcUvkATH-bFPFObVtvtMkyUtWpBt4OQYH0GsLWQXrqvJwiN2s8OcjDVLKLClWw7ONPlsywMxsQ8geGVnAGqyaGs5sigZjuUfU8Bdgw__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://d1wqtxts1xzle7.cloudfront.net/33824098/Research_Paper_on_Basic_of_Artificial_Neural_Network-with-cover-page-v2.pdf?Expires=1653505695&Signature=chwDieBElebrRfURLVkP~IosG2znzj1KBqNj15erJv-RZHTKygP6EzEttuWgo9jleBbq0Sbk-hhkFqM0HzJcSfUxZzSbTJaC4Xipupv2ZRTjx-89cEZtIgCP26sBiT6U53URLDHdeWamJdk6uI9bU0jCTcW480SEub9B6-bOlKJAuJV4w9B-Ml6Ha8zB51zQD-38BxosJXIwcdbEBqIK88zGwV8CxiM-1E5-pkrzzSpwfBLKTcUvkATH-bFPFObVtvtMkyUtWpBt4OQYH0GsLWQXrqvJwiN2s8OcjDVLKLClWw7ONPlsywMxsQ8geGVnAGqyaGs5sigZjuUfU8Bdgw__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://ieeexplore.ieee.org/abstract/document/8859190
https://ieeexplore.ieee.org/abstract/document/8859190
https://eds.p.ebscohost.com/eds/viewarticle/render?data=dGJyMPPp44rp2%2fdV0%2bnjisfk5Ie46bNRrqmzTK6k63nn5Kx94um%2bTa2os0ewprBKnqy4S7ewr0mexss%2b8ujfhvHX4Yzn5eyB4rOvS7eptk61pq4%2b8d%2fiVbSvtX3kr65Oq63kT7ajsk%2bz3KtQ4a21RbGv5E6x3OJJrtywer7o43zn6aSE3%2bTlVebbpHzgs%2bN88enoi6Tq33%2b7t8w%2b3%2bS7feLp8YLxpK9Qr6zCWcKspH7t6Ot58rPkjeri8n326qR%2f89vxjLvK8I3j&vid=14&sid=697ef906-7f78-475f-8c77-39f63fd10f2b@redis
https://eds.p.ebscohost.com/eds/viewarticle/render?data=dGJyMPPp44rp2%2fdV0%2bnjisfk5Ie46bNRrqmzTK6k63nn5Kx94um%2bTa2os0ewprBKnqy4S7ewr0mexss%2b8ujfhvHX4Yzn5eyB4rOvS7eptk61pq4%2b8d%2fiVbSvtX3kr65Oq63kT7ajsk%2bz3KtQ4a21RbGv5E6x3OJJrtywer7o43zn6aSE3%2bTlVebbpHzgs%2bN88dvjfaTq33%2b7t8w%2b3%2bS7feLp433jpLdNs6iuSLCc5Ifw49%2bMu9zzhOrq45DynOWN4%2bnyVdLo830A&vid=14&sid=697ef906-7f78-475f-8c77-39f63fd10f2b@redis
https://eds.p.ebscohost.com/eds/viewarticle/render?data=dGJyMPPp44rp2%2fdV0%2bnjisfk5Ie46bNRrqmzTK6k63nn5Kx94um%2bTa2os0ewprBKnqy4S7ewr0mexss%2b8ujfhvHX4Yzn5eyB4rOvS7eptk61pq4%2b8d%2fiVbSvtX3kr65Oq63kT7ajsk%2bz3KtQ4a21RbGv5E6x3OJJrtywer7o43zn6aSE3%2bTlVebbpHzgs%2bN88dvqiKTq33%2b7t8w%2b3%2bS7a6%2bvs1Guqa9QsKiuSK6rs0ik3O2K69fyVeTr6oTy2%2faMpN3zffHqu2zw6%2bMA&vid=14&sid=697ef906-7f78-475f-8c77-39f63fd10f2b@redis
https://eds.p.ebscohost.com/eds/viewarticle/render?data=dGJyMPPp44rp2%2fdV0%2bnjisfk5Ie46bNRrqmzTK6k63nn5Kx94um%2bTa2os0ewprBKnqy4S7ewr0mexss%2b8ujfhvHX4Yzn5eyB4rOvS7eptk61pq4%2b8d%2fiVbSvtX3kr65Oq63kT7ajsk%2bz3KtQ4a21RbGv5E6x3OJJrtywer7o43zn6aSE3%2bTlVebbpHzgs%2bN88dvqiKTq33%2b7t8w%2b3%2bS7a6%2bvs1Guqa9QsKiuSK6rs0ik3O2K69fyVeTr6oTy2%2faMpN3zffHqu2zw6%2bMA&vid=14&sid=697ef906-7f78-475f-8c77-39f63fd10f2b@redis
https://arxiv.org/pdf/1511.08458.pdf
https://arxiv.org/pdf/1511.08458.pdf

 Shiraz Atzmon, Maor Nave, Shai Isaacs, Alycia Sasson

1) polling with respect to the continuous variables and

fixed categorical parameters.

2) polling in the neighborhood of categorical variables and

fixed continuous parameters.

3) extended polling around the neighborhood of points

whose cost function is close to the incumbent value.”

Several articles discuss the importance of the precision

parameter in determining the machines accuracy level.

However, no research compares ANNs to CNNs on

classification models with backed evidence.

3. RESEARCH QUESTION
What is the performance metric score of each model (ANN,

ANN with attributes, CNN) to the Cifar-10 data set under the

same laboratory conditions? (Operating system, work

environment, computer hardware).

4. RESEARCH INFRASTRUCTURE

4.1. HARDWARE - SOFTWARE

INFRASTRUCTURE
In this research, a code was developed to present the

different test metrics between different models of machine

learning under the same laboratory conditions:

1) Operating system - All models were built under the same

operating system, Windows 10.

2) Work environment (development environment) -

development of the software code for training and creating

the models, as well as predicting and testing the

performance metrics of each of them on Anaconda - Spider

environment.

3) Computer hardware - All models were developed and

tested according to the following computer hardware:

 Laptop Hp  model  15 - dw0xxx

 Processor - 4 cores, 8 logical processors.

 Processor - 1800 MHz, intel core i5 - 8265U CPU, 1.6

GHz

 Video card - Intel UHD Graphics 620

4.2. PYTHON LIBRARIES
(Figure 5)

Library name Definition Use

NumPy fundamental package for scientific

computing in Python

Assist in creating multidimensional array object, various

derived objects (such as masked arrays and matrices), and

an assortment of routines for fast operations on arrays,

including mathematical, logical, shape manipulation,

sorting, selecting

math provides access to the mathematical

functions

Assisting with database manipulation, using methods to

find median averages and quarterly roots during code
development

pandas open source Python package that is
most widely used for data

science/data analysis and machine

learning tasks

Data cleansing, Data fill, Data normalization, Merges and
joins, Statistical analysis, Data inspection, Loading and

saving data

seaborn Seaborn is a Python data

visualization library based

on matplotlib. It provides a high-

level interface for drawing attractive

and informative statistical graphics.

Presenting the database, pulling insights on the data and

the various models developed

matplotlib.pyplot matplotlib.pyplot is a state-based

interface to matplotlib

provides an implicit, MATLAB-like, way of plotting.

TensorFlow end-to-end open source platform for

machine learning.

Assisting in the development of the various models,

determination of layers, amounts of neurons in use, and

activation functions

Keras most used deep learning framework Assisting in the development of the various models,

determination of layers, amounts of neurons in use, and

activation functions

sklearn.metrics A library with different methods for

testing the quality of models for

machine learning

Development models classification matrix assistance

time provides various time-related

functions

Assistance in estimating the execution times of each model

Figure 5  Python research libraires explanation table.

https://matplotlib.org/
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.html#module-matplotlib.pyplot

 Shiraz Atzmon, Maor Nave, Shai Isaacs, Alycia Sasson

4.3. CODE GUIDE

4.3.1. DATA EXPLORATION
In this part of the study, we explored the data that are

supposed to train and test the various models, with the help

of developing functions that help transfer insights on the

data before entering the model. The data were first drawn

using a constructed method, and labels were fitted to them

according to the type of data.

4.3.1.1. DEVELOPED FUNCTIONS
reshape_label  Function reshaping the labels data types

from Uint8 to 1D-array

Sample_plot  creates a visualization for existing images

in the database, according to the training / test values of

the user’s choice (according to a defined number of

images). (Figure 6)

4.3.2. DATA NORMALIZATION
This part of the study was conducted on train and test data:

4.3.2.1. DEVELOPED FUNCTIONS

 Rgb_nor  Function that normalizes (between 0-1) the

existing RGB values for each object (image), in the

database.

 create_batchesFunction that accepts defined data

parts within the existing database according to indexes

(X_train / X_test) and divides it into batches arranged

according to the researcher’s request (in this specific

research, every batch was given 10K image samples).

 add_label_name Function that accepts a batch and

array of classes (label_names), the function adds to the

batch a column (attribute) called label_name. The new

column corresponds to the label number within the

batch.

The function returns the batch after the change.

4.3.3. DATA VISUALIZATION
This part of the study was conducted on train and test data:

4.3.3.1. DEVELOPED FUNCTIONS
 batch_stat_plot Function that receives a batch and the

column’s name from which we issue the statistics on the

data.

 The function issues a graph to each batch that enters the

number of indexes with the existing labels.

 The function saves the plot locally and prints it to the

client.

 print_batch_stat Function that receives a batch and its

number. The function performs printing of the statistics

that are also graphically issued during the program.

 sample_stat Function that receives a sample of an

image and performs a series of actions to extract its

statistics:

o Preserve the minimum and maximum value of the

image array that holds the RGB values of the image

sample.

o Save the image type and shape.

o Save the image label name.

o Rgb_splitter function call - to display a graph of the

image in RGB colors.

o Issue a histogram to the RGB values in the image

sample.

o Local export and prints the statistics.

o The function store every sample locally.

(Figure 7,8,9,10,11 &12)

Figure 6  outputted plot of the 10 first images on cifar10 data set.

Figure 7  example of print_batch_stat function output,

batches 1 and 5 statistics print

Batch1 Batch5

Figure 8  example of batch_stat_plot function output, batches 1

and 5 statistics plot.

 Shiraz Atzmon, Maor Nave, Shai Isaacs, Alycia Sasson

4.3.4. DATA PREPARATION
This part of the study was conducted on train and test data:

4.3.4.1. DEVELOPED FUNCTIONS
 one_hot_en  Function that accepts a batch and issues

that batch as a new DF where the label_name attribute

is characterized as one_hot_vector, which helps the

model to reduce run times of every epoch  factoring

the label names.

 min_max_rgb  Function that gets a batch and finds for

each row (for each image that exists within the batch)

its minimum and maximum RGB value the min and

max values of each image are two new attributes of each

batch.

 mean_r_g_b  Function that gets a batch and finds for

each row (for each image that exists within the batch),

the averaged R, G&B values in it  the averaged R, G&B

values of each image are three new attributes of each

batch.

 prepare_x  A function that receives a batch and draws

from it the relevant attributes (X values) for model

training & testing.

 prepare_y  A function that receives a batch and draws

from it the relevant attributes (the Y values - as a

factorial batch) for model training & testing.

4.3.4.2. FLATTED ATTRIBUTES
 In the ANN model with attributes, we would like to use

one layer of 3072 neurons, each of which processes one

pixel in an image consisting of 32 * 32 pixels in RGB

colors (hence to create one layer, we will perform the

calculation 32 * 32 * 3 = 3072).

 We will add the five attributes we created to this model

so that one layer of neurons will now be approximated

from 3077 neurons describing the model. Section 4.3.6

will review the additional functions developed to train

the data model.

4.3.4.3. THE PRODUCTS ISSUED AT THE END

OF THE PROCESS
 X_train_no_att - DF consists of 50K images, with 32

pixels, arranged as a three-dimensional array for model

training.

 X_test_no_att - DF consists of 10K images, with 32

pixels, arranged as a three-dimensional array to

examine the model.

 Y_train - an array of labels attributed to each image for

model training

 Y_test - A set of labels attributed to each image for

examining the model

 clean_X_train - DF consisting of 50K images, with 3077

pixels (flattened attributes), arranged as a one-

dimensional array for model training.

 clean_X_test - DF consists of 10K images, with 3077

pixels (flattened attributes), arranged as a one-

dimensional array for examining the model.

 Y_train_batch - DF consists of 50K images, with 10

labels as columns, in a factorial configuration (one-hot

vector) for model training.

Figure 10  example of sample_stat function plotted output,

out of test batch.

Figure 11  example of sample_stat function printed output, out

of train batch.

Figure 12  example of sample_stat function printed output,

out of test batch.

 Shiraz Atzmon, Maor Nave, Shai Isaacs, Alycia Sasson

4.3.5. MODELS BUILD & TRAIN

4.3.5.1. RESEARCH PROCESS
 a test will be performed on each model developed in

accordance with the following guidelines:

 After calling the model and initializing it, we will enter

the relevant input values  X_train_no_att,

Y_train_batch.

 Train the model in 10 and 50 epochs.

 epochs are the number of times the model corrects and

maintains the values of the weights according to its

learning rate.

 Time measure for training the model in each training

round.

 Extracting prediction for the first ten images in the test

database.

 Print the model classification report.

4.3.5.2. DEVELOPED FUNCTIONS
1) get_ANN_model  This function creates the model

template and returns it according to the selected

relevant specifications:

The data type that enters the model is 32 * 32 * 3

image. The model is set on three layers to classify

the attributes in it:

o Layer 1 - 3000 neurons, activation function - ReLu

(normalization of negative values to zero - removal

of exceptions)  correlated to the object volumes

(3072 pixels).

o Layer 2 - 1000 neurons, activation function - ReLu

(normalization of negative values to zero - removal

of exceptions) - division by one-third of the pixels

training the model.

o Layer 3 - 10 neurons, activation function - Sigmoid

(setting values for classification) - according to the

ten existing labels.

o The model uses a loss function corresponding to

categorical factor values (the Y values entering this

model are in a One hot vector configuration).

o The model presents the following performance

metrics - accuracy, Precision, Recall.

2) get_ANN_att_model  This function creates the

model template and returns it according to the

selected relevant specifications:

The data type that enters the model is a flat

attributed image with 3077 attributes (3072 RBG

values + 5 additional attributes).The model is set on

three layers to classify the attributes in it:

o Layer 1 - 3000 neurons, activation function - ReLu

(normalization of negative values to zero -

removal of exceptions)  correlated to the object

volumes (3077 pixels).

o Layer 2 - 1000 neurons, activation function - ReLu

(normalization of negative values to zero -

removal of exceptions) - division by one-third of

the pixels training the model.

o Layer 3 - 10 neurons, activation function - Sigmoid

(setting values for classification) - according to the

ten existing labels.

o The model uses a loss function corresponding to

categorical factor values (the Y values entering

this model are in a One hot vector configuration).

o The model presents the following performance

metrics - accuracy, Precision, Recall.

3) get_CNN_model  This function creates the model

template and returns it according to the selected

relevant specifications:

The data type that enters the model is 32 * 32 * 3

image.

The model is set on two convolution layers to classify

the attributes in it:

o Layer 1 – 32: filters that normalize the pixel values

to match the relevant object and classify it in the

image. Filter size 3 * 3  randomly selected,

activation function  ReLu (normalization of

negative values to zero - removal of exceptions).

o Layer 2 – 64: filters that normalize the pixel values

(half of each pixel) to match the relevant object

and classify it in the image. Filter size 3 * 3 

randomly selected, activation function  ReLu

(normalization of negative values to zero -

removal of exceptions).

o The model is set on two pooling layers to classify

the attributes in it:

o Layer 1 - By maximum choice between pixel

values in 2 * 2 configuration.

o Layer 2 - By maximum choice between pixel

values in 2 * 2 configuration.

o The model is set on two flatten layers to classify

the attributes in it:

o Layer 1 - 64 neurons, activation function - ReLu

(normalization of negative values to zero -

removal of exceptions)  correlated to the

object volumes (64 pixels  From the last

filter).

o Layer 2 - 10 neurons, activation function -

SoftMax (setting values for classification) -

according to the ten existing labels.

o The model uses a loss function corresponding to

categorical factor values (the Y values entering

this model are in a One hot vector

configuration).

o The model presents the following performance

metrics - accuracy, Precision, Recall.

4) model_time A function that receives the trained

model, X and Y values of the trained model, and the

desired number of epochs. The function measures the

running time of the model training session in seconds.

 Shiraz Atzmon, Maor Nave, Shai Isaacs, Alycia Sasson

5. RESEARCH RESULTS

5.1. CLASSIFICATION MATRIX
(Figure 13)

5.2. PREDICTIONS & RUN TIME RESULTS
 (Figure 14)

5.3. SUMMARY

 Ranking of the best-performing models in Classification

Matrix indices are:

o CNN  best accuracy (10 epochs  0.78, 50 epochs 

0.97) , recall (10 epochs  0.72, 50 epochs  0.97) and

precision (10 epochs  0.84, 50 epochs  0.97)

parameters after 10 and 50 epochs.

o ANN with attributes  second best accuracy (10 epochs

 0.5638, 50 epochs  0.9124) , recall (10 epochs 

0.9504, 50 epochs  0.9992) and precision (10 epochs 

0.1953, 50 epochs  0.1978) parameters after 10 and 50

epochs.

o ANN  third best accuracy (10 epochs  0.5628, 50

epochs  0.9122) , recall (10 epochs  0.9544, 50

epochs  0.9992) and precision (10 epochs  0.1904, 50

epochs  0.2016) parameters after 10 and 50 epochs.

 Ranking of the best performing models in Predictions &

Run time indices are:

o CNN  best run time (10 epochs  6.25, 50 epochs 

30.23) and predictions (10 epochs  90%, 50 epochs 

70%) parameters after 10 and 50 epochs.

o ANN second best run time (10 epochs  14.57, 50

epochs  69.55) and predictions (10 epochs  60%, 50

epochs  90%) parameters after 10 and 50 epochs.

o ANN with attributes third best run time (10 epochs 

14.57, 50 epochs  70.47) and predictions (10 epochs

 50%, 50 epochs  60%) parameters after 10 and 50

epochs.

o As can be seen from the data appearing in this section, the

main consideration made in ranking the models is

according to their run times and not necessarily

according to the ability of the model to predict the first 10

test inputs.
This is because the first ten inputs are not sufficient

parameters to check the accuracy of each model.

From this it can be concluded that the prediction

calculation was performed as part of the experiment itself

in order to verify the model's ability to analyze new test

data inputs.

6. DISCUSSION
Based on the research analysis performed and the research

question presented (comparison to examine the quality of the

various models for solving a classification problem based on

the same database  Cifar 10), the following conclusions can

be drawn:

 The CNN model has the best quality metrics performance

for resolving the classification problem.

 ANN with attributes – advantages:

1) Adding attributes to a basic ANN model helps increase

the model’s accuracy.
2) Flattening the data before entering the model helps

increase the model’s accuracy.

 ANN with attributes – disadvantages:

Building a model that receives flat data on high and heavy

scales causes an increase in model run times.

 Prediction metric - first ten images in the database  does

not provide in-depth information about the quality of the

model but is an indication of the machine’s ability to

predict.

 Limitation & future research:

1) An in-depth study of image classification should be

performed, with additional databases to confirm the

study’s conclusions.

2) The given research question should be examined in

accordance with different research conditions

Model Accuracy

-10
Epochs

Precision

-10
Epochs

Recall

-10
Epochs

Accuracy

-50
Epochs

Precision

-50
Epochs

Recall

-50
Epochs

CNN 0.7843 0.8468 0.7263 0.9701 0.9722 0.9687

ANN with

attributes

0.5638 0.1953 0.9504 0.9124 0.1978 0.9992

ANN 0.5628 0.1904 0.9544 0.9122 0.2016 0.9992

Model Time -

10

Epochs

(In

min)

Time -

50

Epochs

(In

min)

10 first

predictions–

10 epochs

10 first

predictions–

50 epochs

CNN 6.25 30.23 90% 70%

ANN with

attributes

14.57 70.47 50% 60%

ANN 14.22 69.55 60% 90%

Figure 13  classification matrix results.

Figure 14  Predictions & Run time results.

 Shiraz Atzmon, Maor Nave, Shai Isaacs, Alycia Sasson

(Operating system, Work environment, Computer

hardware).

3) Future research should use cifar-100 database.

7. CONCLUSION

In this paper, we have presented a comparison between three

different ML models on the cifar-10 database. Furthermore,

we set new metrical parameters to check the quality of each

model and developed new attributes for the database.

Data exploration, normalization, visualization, and

preparation were conducted throughout the experiment.

The CNN models take care of the problem and the research

question with the most efficient (program run time and

predictions) and most practical (highest classification values)

way in both rounds conducted on each model (50 and 10

epochs).

Moreover, we presented the effectiveness of adding

attributes to the database before entering the ML model and

also presented the effectiveness of flattening the data before

entering the model (depending on the type of final data and

the problem examined).

Additionally, the significant disadvantages of adding

attributes were presented.

Two main limitations were described in this research:

1) Hardware - Software Infrastructure interface.

2) Only one database.

We see our results as encouraging and hope they can provide

actionable insights for future research of comparisons

between different ML models.

 Shiraz Atzmon, Maor Nave, Shai Isaacs, Alycia Sasson

REFERENCES

[1] The definition “without being explicitly programmed” is often attributed to Arthur Samuel, who coined the term “machine learning” in 1959, but the phrase is not found verbatim in this publication and may be a paraphrase that

appeared later. Confer “Paraphrasing Arthur Samuel (1959), the question is: How can computers learn to solve

problems without being explicitly programmed?” in Koza, John R.; Bennett, Forrest H.; Andre, David; Keane, Martin A.

(1996). Automated Design of Both the Topology and Sizing of Analog Electrical Circuits Using Genetic Programming.

Artificial Intelligence in Design ’96. Springer, Dordrecht. pp. 151–170. doi:10.1007/978-94-009-0279-4_9.

[2] Shahab Wahhab Kareem, Zhala Jameel Hamad, Shavan Askar “An evaluation of CNN and ANN in prediction weather

forecasting: A review” in ISSN 2712-0562 Sustainable Engineering and Innovation Vol.3, No.2, October 2021,(pp.148-

159).

[3] Jaswinder Singh and Rajdeep Banerjee, “A Study on Single and Multi-layer Perceptron Neural Network”, August

2019.

[4] Mehmood ul Hasan, Saleem Ullah, Muhammad Jaleed Khan, Khurram Khurshid, “COMPARATIVE ANALYSIS OF SVM,

ANN AND CNN FOR CLASSIFYING VEGETATION SPECIES USING HYPERSPECTRAL THERMAL INFRARED DATA”, June

2019.

[5] Vidushi Meel, “ANN and CNN: Analyzing Differences and Similarities”

[6] P. Rahul; P. Jagadeesh, “Detection of Dementia Disease using CNN Classifier by Comparing with ANN Classifier ” in

International Conference on Business Analytics for Technology and Security (ICBATS), February 2022.

[7] Rahul Chauhan &Kamal Kumar Ghanshala, “ Convolutional Neural Network (CNN) for Image Detection and

Recognition” in First International Conference on Secure Cyber Computing and Communication (ICSCCC), December

2018.

[8] Saad Albawi & Tareq Abed Mohammed & Saad Al-Zawi, “Understanding of a convolutional neural network ” in

International Conference on Engineering and Technology (ICET), August 2017.

[9] Rahul Chauhan & Kamal Kumar Ghanshala & R.C Joshi, “ Convolutional Neural Network (CNN) for Image Detection and

Recognition” in First International Conference on Secure Cyber Computing and Communication (ICSCCC), December

2018.

[10] Angelov Plamen; Gegov, Alexander; Jayne, Chrisina; Shen, Qiang (2016-09-06). Advances in Computational

Intelligence Systems: contributions Presented at the 16th UK Workshop on Computational Intelligence, September 7–
9, 2016, Lancaster, UK. Springer International Publishing. pp. 441–. ISBN 9783319465623. Retrieved 22 January 2018.

[11] O. I. Abiodun et al., “Comprehensive Review of Artificial Neural Network Applications to Pattern Recognition” in

IEEE Access, Vol 7 October 2019, (pp. 158820 - 158846).

[12] Jaswinder Singh and Rajdeep Banerjee, “A Study on Single and Multi-layer Perceptron Neural Network”, in 3rd

International Conference on Computing Methodologies and Communication (ICCMC), August 2019.

[13] Keiron O’Shea and Ryan Nash, “An Introduction to Convolutional Neural Networks” December 2015.

[14] Matthias Ihme and Heinz Pitsch, “Generation of Optimal Artificial Neural Networks Using a Pattern Search Algorithm:

Application to Approximation of Chemical Systems” February 2008.

https://en.wikipedia.org/wiki/Doi_(identifier)
https://ieeexplore.ieee.org/author/37086961524
https://ieeexplore.ieee.org/author/37086955918
https://books.google.com/books?id=jnD_DAAAQBAJ&pg=PA441
https://books.google.com/books?id=jnD_DAAAQBAJ&pg=PA441
https://books.google.com/books?id=jnD_DAAAQBAJ&pg=PA441
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/9783319465623
https://ieeexplore.ieee.org/author/37086961524
https://ieeexplore.ieee.org/author/37086955918
https://ieeexplore.ieee.org/xpl/conhome/8811524/proceeding
https://ieeexplore.ieee.org/xpl/conhome/8811524/proceeding

	ABSTRACT
	1. INTRODUCTION
	1.1. NN
	1.2. ANN
	1.2.1 ANN ATTRIBUTES ADDITION
	1.3. CNN
	1.4. ONE HOT ENCODING VECTOR
	1.5. ACTIVATION FUNCTIONS
	1.6. DEVELOP ENVIRONMENT & DATA SET
	2. LITERATURE & RELATED WORK
	3. RESEARCH QUESTION
	4. RESEARCH INFRASTRUCTURE
	4.1. HARDWARE - SOFTWARE INFRASTRUCTURE
	4.2. PYTHON LIBRARIES
	4.3. CODE GUIDE
	4.3.1. DATA EXPLORATION
	4.3.1.1. DEVELOPED FUNCTIONS
	4.3.2. DATA NORMALIZATION
	4.3.2.1. DEVELOPED FUNCTIONS
	4.3.3. DATA VISUALIZATION
	4.3.3.1. DEVELOPED FUNCTIONS
	4.3.4. DATA PREPARATION
	4.3.4.1. DEVELOPED FUNCTIONS
	4.3.4.2. FLATTED ATTRIBUTES
	4.3.4.3. THE PRODUCTS ISSUED AT THE END OF THE PROCESS
	4.3.5. MODELS BUILD & TRAIN
	4.3.5.1. RESEARCH PROCESS
	4.3.5.2. DEVELOPED FUNCTIONS
	1) get_ANN_model (This function creates the model template and returns it according to the selected relevant specifications:
	2) get_ANN_att_model (This function creates the model template and returns it according to the selected relevant specifications:
	3) get_CNN_model (This function creates the model template and returns it according to the selected relevant specifications:
	4) model_time(A function that receives the trained model, X and Y values of the trained model, and the desired number of epochs. The function measures the running time of the model training session in seconds.
	5. RESEARCH RESULTS
	5.1. CLASSIFICATION MATRIX
	(Figure 13)
	5.2. PREDICTIONS & RUN TIME RESULTS
	(Figure 14)
	5.3. SUMMARY
	6. DISCUSSION
	7. CONCLUSION

