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ABSTRACT 
Machine learning (ML) is the process by which computers 

develop pattern recognition, where they can learn and then 

create predictions based on their learning. The level of 

supervision is what distinguishes one ML method from the 

other. There are four primary learning models: supervised 

learning, unsupervised learning, semi-supervised learning, 

and reinforcement learning. Many ML models function in a 

way that resembles human neural functionality. In our 

research and this article, we will focus on the supervised 

learning (SL) method to evaluate the efficiency and 

effectiveness of two different learning models, Artificial 

Neural Networks (ANN) and Convolutional Neural Networks 

(CNN). 

Our research intends to determine which method is more 

cost-effective, and compare both methods based on multiple 

relevant factors, also for assisting in the decision between 

methods based on use cases. To the best of our knowledge, 

there are no published comparison articles between ANN 

and CNN, and no official research evaluates both methods on 

the same data set. . Most of the information is found on 

online blogs and forums that have no academic credibility .In 

our research, we used Python to compare the models, using a 

regular CPU and not any graphic card. We found that CNN is 

better in all criteria than ANN, with or without adding 

attributes. We also observed that the ANN model 

significantly improves once attributes are added- although it 

negatively affects its processing time. 
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1. INTRODUCTION 
ML is a sub-concept of artificial intelligence describing the 

process of computational learning. ML algorithms are 

designed to allow computers to make decisions, predictions, 

and insights based on given information. The process 

attempts to mimic the human thought process, and some are 

built similarly to the human neural systems. ML algorithms 

build a model based on sample data (training data) to make 

predictions or decisions without being explicitly 

programmed. [1] 

 

ML is divided into four major categories: 

1.  Supervised learning - the computer is presented with 

example inputs and desired outputs (the training set). The 

goal is to learn a general rule that applies to a statistically 

sufficient majority of the data, then apply that rule to a new 

data set and generate the outputs autonomously.  

2. Unsupervised learning - No labels are given to the learning 

algorithm; the algorithm is designed to find patterns and 

create rules based on the observed set.  
3. Semi-supervised learning - a combination of the two 

former methods, where some outputs are given; there is still 

a requirement to develop new rules and find patterns in the 

set. 

4. Reinforcement learning - A computer program interacts 

with a dynamic environment in which it must perform a 

specific goal. In the navigation process while attempting to 

reach the desired output, the algorithm is given feedback 

(reward), which it tries to maximize.  

 

1.1. NN 
The primary method to apply ML is using neural network 

(NN) algorithms. These algorithms imitate human brain 

activity, so the terminology used to discuss them is also 

similar to biological terminology. In our research, we wanted 

to compare two types of NN- ANN, and CNN on the same 

dataset to determine which is superior to the other.  

Neural Networks (NNs) use split tests to analyze the data; 

thus, the primary data set is divided into two datasets - one 

for training and one for testing. Each dataset has X and Y 

variables, where the independent variables are called (x), and 

the dependent variables are called (y).  

Each group of variables is also divided into training and 

testing sets, each having a designated label: X train, Y train, X 

test, Y test. The algorithm calls each variable for its cause- the 

training process or the testing run. [2] 

1.2. ANN 
In our research, we compared ANNs with CNNs. Artificial 

neural networks (ANNs) use weights and an activation 

function in the bulk of their activity. Namely, ANNs simulate 

the brain’s and nervous system’s electrical activity, where 

processing elements (perceptrons) are connected to other 

processing elements. Typically, the perceptrons are arranged 

in a vector or layer, with the output of one layer serving as 

another layer’s input. The perceptrons are multiplied by their 

weights, and the learning itself is based on these weights. [3] 

 

 (Figure 1) 

 

Figure 1  Demonstration of basic layers of 

preceptrons in ANN model 
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All the weight-adjusted input values to a perceptron are then  

aggregated using a vector to scalar function such as 

summation (i.e., y = Σwijxi), averaging, input maximum, or 

mode value to produce a single input value to the perceptron. 

Once the input value is calculated, the perceptron uses a 

transfer function to produce its output and the input signals 

for the subsequent processing layer. The transfer function 

transforms the perceptron’s input value. [4] 

Typically, this transformation involves using a sigmoid, 

hyperbolic-tangent, or other nonlinear function. The process 

is repeated between layers of perceptrons until the neural 

network produces a final output value or vector of values. 

ANNs consist of three main layers: Input, Hidden, and Output. 

At the input layer, the data is inserted. In the hidden layer, it 

is processed and transformed and moves to the output layers 

where it is displayed. This article discusses an ANN that uses 

the supervised learning model. In this type of machine, the 

dataset used to determine the rules is divided into two 

groups: training and testing. The machine then studies the 

data in the training set and applies it to the testing set. The 

correctness of the result determines the machine’s accuracy 

level. [2] 

1.2.1  ANN ATTRIBUTES ADDITION 
In our research, we wanted to check if adding attributes to 

the ANN model could improve its performance, and we 

proved it does. We added five attributes: 
 

1) Minimum RGB 

2) Maximum RGB 

3) Average Red 

4) Average Green 

5) Average Blue 

1.3. CNN 
Convolutional Neural Network (CNN) is a Deep Learning 

algorithm that can take an input image, assign importance 

(learnable weights and biases) to various objects in the 

image, and differentiate one from the other. CNNs leverage 

principles from linear algebra, specifically matrix 

multiplication, to identify patterns within an image. They 

have three main types of layers: The Convolutional layer, 

Pooling layer, and Fully-connected (FC) layer. The 

convolutional layer is the first layer of a convolutional 

network. While additional convolutional layers or pooling 

layers can follow convolutional layers, the fully-connected 

layer is the final layer. 

With each layer, the CNN increases complexity, identifying 

greater portions of the image. Earlier layers focus on simple 

attributes, such as colors and edges. As the image data 

progresses through the layers of the CNN, it starts to 

recognize larger elements or shapes of the object until it 

finally identifies the intended object. [5] 

The convolutional layer is the core building block of a CNN, 

and it is where the majority of computation occurs. It 

requires a few components: input data, a filter, and an 

attribute map. For example, in a color image made up of a 

matrix of pixels in 3D, the input will have three dimensions—
height, width, and depth—which correspond to RGB in an 

image. A kernel (or a filter) is the detecting power of the 

machine. It will move across the receptive fields of the image, 

checking if the attribute is present. This process is known as 

convolution. [6] 

The attribute detector is a two-dimensional (2-D) array of 

weights representing part of the image. While they can vary 

in size, the filter size is typically a 3x3 matrix; this also 

determines the size of the receptive field. The filter is then 

applied to an image area, and a dot product is calculated 

between the input pixels and the filter. This dot product is 

then fed into an output array. Afterward, the filter shifts by a 

stride, repeating the process until the kernel has swept across 

the entire image. The final output from the series of dot 

products from the input and the filter is known as an 

attribute map, activation map, or a convolved attribute. [7] 

The pooling layer reduces the number of parameters in the 

input by sweeping another filter across the entire input, only 

that this filter does not have any weights. Instead, the filter 

applies an aggregation function to the values within the 

receptive field, populating the output array. Pooling can be 

done in two primary ways: 

1) Max pooling: As the filter moves across the input, it 

selects the pixel with the maximum value to send to the 

output array. 

2) Average pooling: As the filter moves across the input, it 

calculates the average value within the receptive field to 

send to the output array.  

In the Fully-connected layer, each node in the output 

layers is connected directly to a node in the previous 

layer. This layer performs the classification based on 

attributes extracted through the previous layers and 

their different filters. [8] 

(Figure 2 & Figure 3) 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2  Demonstration of the network's convolution 

methodology. 

Figure 3  Demonstration of summation-based kernel filtering 

and pooling methodology. 
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1.4. ONE HOT ENCODING VECTOR 
In our research, we used One hot encoding, which is the 

process of converting categorical data variables so they can 

be provided to ML algorithms to improve predictions. This 

encoding is done to prepare the data for the ML model and 

make it easier for the machine to process and compare it to 

other data. Categorical label values are transformed into 

numerical data and can be analyzed using mathematical and 

statistical evaluations. With one hot encoding, we convert 

each categorical value into a new column where it is assigned 

with a binary value- 1 or 0. Each value is represented as a 

binary vector. One hot encoding enables better exploitation of 

computation power and consequently better performance 

time. (Figure 4) [9] 

 

 

 

 

1.5. ACTIVATION FUNCTIONS 
We have used several activation functions in different layers 

of our model. Both the ANN and the CNN use rectified linear 

activation function (ReLu), a linear function that will output 

the input directly if it is positive; otherwise, it will output 

zero. In the last layer of our ANN model, we used the SoftMax 

function, a generalization of the logistic function to multiple 

dimensions. It normalizes the network’s output to a 

probability distribution over the predicted output classes. On 

the other hand, in our CNN model, we used the Sigmoid 

activation function in the last layer. A sigmoid function is a 

bounded, differentiable, real function defined for all real 

input values. It has a non-negative derivative at each point 

and exactly one inflection point. Generally speaking, when a 

model has a Pooling process in it, it is better to use SoftMax, 

and when it does not, Sigmoid.  

1.6. DEVELOP ENVIRONMENT & DATA SET 
Our research was done in the developing environment 

Spyder and coded in Python. Spyder is an open-source 

environment written in Python designed for scientists, 

engineers, and data analysts. Python is the common 

programming language in the field of AI and ML. We used 

CIFAR-10 as our tested dataset. CIFAR-10 is a collection of 

60,000 32x32 color images in 10 different classes: airplanes, 

cars, birds, cats, deer, dogs, frogs, horses, ships, and trucks. 

There are 6,000 images of each class.[10]  

Each model generated a classification report after each run. 

The report includes several variables that assist in evaluating 

the model: accuracy, recall, and precision. We also added a 

run-time value. The accuracy parameter shows what 

percentage of the outputs was correct, recall is the ratio of 

true positives to the sum of true and false negatives, precision 

is the ratio of true positives to the sum of true and false 

positives. Each can teach different things about the model and 

its effectiveness.  

Before each model is run, cleaning the data and preparing it 

for the process is necessary. To do so, we used functions to 

explore the entire set and check the validity of each variable. 

We ensured no missing or damaged data and that each class 

of elements from CIFAR-10 contained the same number of 

valid images. The model preparation was also done ahead, 

including the splitting into train and test datasets. The results 

show with statistical significance that the CNN model is 

superior to the ANN model in image identification and that 

adding attributes to the ANN model improves its 

performance.   
 

2. LITERATURE & RELATED WORK 
ANNs are mentioned and discussed in informal 

communication channels more than they are mentioned in 

academic literature. There are many articles regarding ANNs 

as a novel notion, ideology, and technical game-changer, but 

not as many focus on the scientific aspect of it. Maind and 

Wanker elaborated on the ANN method, yet their study from 

2014 lacks scientific explanations. A more recent paper is 

more precise. A group of researchers from Malaysia and 

Nigeria [11] referred to ANNs as statistical data models and 

gave further explanations of ANNs, as well as on CNNs. They 

discussed the use of ANNs in Picture Recognition problems 

and described how the machine works with technical 

terminology. Clearly, more research is needed to improve 

ANN’s in significant ways and allow interdisciplinary 

integration. Singh and Banerjee (2019) [12] described the 

notion and methodology of a perceptron, referred to ANNs, 

and described them as multilayer perceptrons. Numerous 

studies are written on the use of CNNs for several causes and 

in several disciplines, such as microorganism image analysis, 

defect detection of 3C in products, and Brain Tumor 

segmentation. “Artificial Neural Networks (ANNs) are computational 

processing systems heavily inspired by how biological 

nervous systems (such as the human brain) operate. ANNs 

are comprised of a high number of interconnected 

computational nodes (referred to as neurons), which work 

entwine in a distributed fashion to collectively learn from the 

input to optimize its final output.”  (O’Shea and Nash,2015, pp 

1). [13] O’Shea and Nash further defined CNNS as “analogous 

to traditional ANNs in that they are comprised of neurons 

that self-optimize through learning. Each neuron will still 

receive input and perform an operation (such as a scalar 

product followed by a nonlinear function) - the basis of 

countless ANNs. 

 

 

 

From the input raw image vectors to the final output of the 

class score, the entire network will still express a single 

perceptive score function (the weight). The last layer will 

contain loss functions associated with the classes, and all of 

the regular tips and tricks developed for traditional ANNs still 

apply.” (pp 2). 

Ihme and Pitsch [14] referred to the polling process and 

described it as follows: “Polling is conducted in three steps 

(Audet & Dennis, 2000):  

Figure  4  One hot encoded vector manipulation 

example. 

https://d1wqtxts1xzle7.cloudfront.net/33824098/Research_Paper_on_Basic_of_Artificial_Neural_Network-with-cover-page-v2.pdf?Expires=1653505695&Signature=chwDieBElebrRfURLVkP~IosG2znzj1KBqNj15erJv-RZHTKygP6EzEttuWgo9jleBbq0Sbk-hhkFqM0HzJcSfUxZzSbTJaC4Xipupv2ZRTjx-89cEZtIgCP26sBiT6U53URLDHdeWamJdk6uI9bU0jCTcW480SEub9B6-bOlKJAuJV4w9B-Ml6Ha8zB51zQD-38BxosJXIwcdbEBqIK88zGwV8CxiM-1E5-pkrzzSpwfBLKTcUvkATH-bFPFObVtvtMkyUtWpBt4OQYH0GsLWQXrqvJwiN2s8OcjDVLKLClWw7ONPlsywMxsQ8geGVnAGqyaGs5sigZjuUfU8Bdgw__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://d1wqtxts1xzle7.cloudfront.net/33824098/Research_Paper_on_Basic_of_Artificial_Neural_Network-with-cover-page-v2.pdf?Expires=1653505695&Signature=chwDieBElebrRfURLVkP~IosG2znzj1KBqNj15erJv-RZHTKygP6EzEttuWgo9jleBbq0Sbk-hhkFqM0HzJcSfUxZzSbTJaC4Xipupv2ZRTjx-89cEZtIgCP26sBiT6U53URLDHdeWamJdk6uI9bU0jCTcW480SEub9B6-bOlKJAuJV4w9B-Ml6Ha8zB51zQD-38BxosJXIwcdbEBqIK88zGwV8CxiM-1E5-pkrzzSpwfBLKTcUvkATH-bFPFObVtvtMkyUtWpBt4OQYH0GsLWQXrqvJwiN2s8OcjDVLKLClWw7ONPlsywMxsQ8geGVnAGqyaGs5sigZjuUfU8Bdgw__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://ieeexplore.ieee.org/abstract/document/8859190
https://ieeexplore.ieee.org/abstract/document/8859190
https://eds.p.ebscohost.com/eds/viewarticle/render?data=dGJyMPPp44rp2%2fdV0%2bnjisfk5Ie46bNRrqmzTK6k63nn5Kx94um%2bTa2os0ewprBKnqy4S7ewr0mexss%2b8ujfhvHX4Yzn5eyB4rOvS7eptk61pq4%2b8d%2fiVbSvtX3kr65Oq63kT7ajsk%2bz3KtQ4a21RbGv5E6x3OJJrtywer7o43zn6aSE3%2bTlVebbpHzgs%2bN88enoi6Tq33%2b7t8w%2b3%2bS7feLp8YLxpK9Qr6zCWcKspH7t6Ot58rPkjeri8n326qR%2f89vxjLvK8I3j&vid=14&sid=697ef906-7f78-475f-8c77-39f63fd10f2b@redis
https://eds.p.ebscohost.com/eds/viewarticle/render?data=dGJyMPPp44rp2%2fdV0%2bnjisfk5Ie46bNRrqmzTK6k63nn5Kx94um%2bTa2os0ewprBKnqy4S7ewr0mexss%2b8ujfhvHX4Yzn5eyB4rOvS7eptk61pq4%2b8d%2fiVbSvtX3kr65Oq63kT7ajsk%2bz3KtQ4a21RbGv5E6x3OJJrtywer7o43zn6aSE3%2bTlVebbpHzgs%2bN88dvjfaTq33%2b7t8w%2b3%2bS7feLp433jpLdNs6iuSLCc5Ifw49%2bMu9zzhOrq45DynOWN4%2bnyVdLo830A&vid=14&sid=697ef906-7f78-475f-8c77-39f63fd10f2b@redis
https://eds.p.ebscohost.com/eds/viewarticle/render?data=dGJyMPPp44rp2%2fdV0%2bnjisfk5Ie46bNRrqmzTK6k63nn5Kx94um%2bTa2os0ewprBKnqy4S7ewr0mexss%2b8ujfhvHX4Yzn5eyB4rOvS7eptk61pq4%2b8d%2fiVbSvtX3kr65Oq63kT7ajsk%2bz3KtQ4a21RbGv5E6x3OJJrtywer7o43zn6aSE3%2bTlVebbpHzgs%2bN88dvqiKTq33%2b7t8w%2b3%2bS7a6%2bvs1Guqa9QsKiuSK6rs0ik3O2K69fyVeTr6oTy2%2faMpN3zffHqu2zw6%2bMA&vid=14&sid=697ef906-7f78-475f-8c77-39f63fd10f2b@redis
https://eds.p.ebscohost.com/eds/viewarticle/render?data=dGJyMPPp44rp2%2fdV0%2bnjisfk5Ie46bNRrqmzTK6k63nn5Kx94um%2bTa2os0ewprBKnqy4S7ewr0mexss%2b8ujfhvHX4Yzn5eyB4rOvS7eptk61pq4%2b8d%2fiVbSvtX3kr65Oq63kT7ajsk%2bz3KtQ4a21RbGv5E6x3OJJrtywer7o43zn6aSE3%2bTlVebbpHzgs%2bN88dvqiKTq33%2b7t8w%2b3%2bS7a6%2bvs1Guqa9QsKiuSK6rs0ik3O2K69fyVeTr6oTy2%2faMpN3zffHqu2zw6%2bMA&vid=14&sid=697ef906-7f78-475f-8c77-39f63fd10f2b@redis
https://arxiv.org/pdf/1511.08458.pdf
https://arxiv.org/pdf/1511.08458.pdf
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1) polling with respect to the continuous variables and 

fixed categorical parameters. 

2) polling in the neighborhood of categorical variables and 

fixed continuous parameters. 

3) extended polling around the neighborhood of points 

whose cost function is close to the incumbent value.” 

Several articles discuss the importance of the precision 

parameter in determining the machines accuracy level. 

However, no research compares ANNs to CNNs on 

classification models with backed evidence. 

 

3. RESEARCH QUESTION 
What is the performance metric score of each model (ANN, 

ANN with attributes, CNN) to the Cifar-10 data set under the 

same laboratory conditions? (Operating system, work 

environment, computer hardware). 

4. RESEARCH INFRASTRUCTURE 

4.1. HARDWARE - SOFTWARE 

INFRASTRUCTURE 
In this research, a code was developed to present the 

different test metrics between different models of machine 

learning under the same laboratory conditions: 

1) Operating system - All models were built under the same 

operating system, Windows 10. 

2) Work environment (development environment) - 

development of the software code for training and creating 

the models, as well as predicting and testing the 

performance metrics of each of them on Anaconda - Spider 

environment. 

3) Computer hardware - All models were developed and 

tested according to the following computer hardware: 

 Laptop Hp  model  15 - dw0xxx 

 Processor - 4 cores, 8 logical processors. 

 Processor  - 1800 MHz, intel core i5 - 8265U CPU, 1.6 

GHz 

 Video card - Intel UHD Graphics 620 

4.2. PYTHON LIBRARIES 
(Figure 5) 

Library name Definition Use 

NumPy fundamental package for scientific 

computing in Python 

Assist in creating multidimensional array object, various 

derived objects (such as masked arrays and matrices), and 

an assortment of routines for fast operations on arrays, 

including mathematical, logical, shape manipulation, 

sorting, selecting 

math provides access to the mathematical 

functions 

Assisting with database manipulation, using methods to 

find median averages and quarterly roots during code 
development  

pandas open source Python package that is 
most widely used for data 

science/data analysis and machine 

learning tasks 

Data cleansing, Data fill, Data normalization, Merges and 
joins, Statistical analysis, Data inspection, Loading and 

saving data 

 

seaborn Seaborn is a Python data 

visualization library based 

on matplotlib. It provides a high-

level interface for drawing attractive 

and informative statistical graphics. 

Presenting the database, pulling insights on the data and 

the various models developed 

matplotlib.pyplot matplotlib.pyplot is a state-based 

interface to matplotlib 

provides an implicit, MATLAB-like, way of plotting. 

TensorFlow end-to-end open source platform for 

machine learning. 

Assisting in the development of the various models, 

determination of layers, amounts of neurons in use, and 

activation functions 

Keras most used deep learning framework Assisting in the development of the various models, 

determination of layers, amounts of neurons in use, and 

activation functions 

sklearn.metrics A library with different methods for 

testing the quality of models for 

machine learning 

Development models classification matrix assistance 

time provides various time-related 

functions 

Assistance in estimating the execution times of each model 

  

 

 

Figure 5  Python research libraires explanation table. 

https://matplotlib.org/
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.html#module-matplotlib.pyplot
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4.3. CODE GUIDE 

4.3.1. DATA EXPLORATION 
In this part of the study, we explored the data that are 

supposed to train and test the various models, with the help 

of developing functions that help transfer insights on the 

data before entering the model. The data were first drawn 

using a constructed method, and labels were fitted to them 

according to the type of data. 

4.3.1.1. DEVELOPED FUNCTIONS 
reshape_label  Function reshaping the labels data types 

from Uint8 to 1D-array 

Sample_plot  creates a visualization for existing images 

in the database, according to the training / test values of 

the user’s choice (according to a defined number of 

images). (Figure 6) 

 

 

 

 

 

 

 

 

 

 

4.3.2. DATA NORMALIZATION 
This part of the study was conducted on train and test data: 

4.3.2.1. DEVELOPED FUNCTIONS 

 Rgb_nor  Function that normalizes (between 0-1) the 

existing RGB values for each object (image), in the 

database. 

 create_batchesFunction that accepts defined data 

parts within the existing database according to indexes 

(X_train / X_test) and divides it into batches arranged 

according to the researcher’s request (in this specific 

research, every batch was given 10K image samples). 

 add_label_name Function that accepts a batch and 

array of classes (label_names), the function adds to the 

batch a column (attribute) called label_name. The new 

column corresponds to the label number within the 

batch. 

The function returns the batch after the change. 

 

 

 

 

 

 

4.3.3. DATA VISUALIZATION 
This part of the study was conducted on train and test data: 

4.3.3.1. DEVELOPED FUNCTIONS 
 batch_stat_plot Function that receives a batch and the 

column’s name from which we issue the statistics on the 

data. 

 The function issues a graph to each batch that enters the 

number of indexes with the existing labels. 

 The function saves the plot locally and prints it to the 

client. 

 print_batch_stat Function that receives a batch and its 

number. The function performs printing of the statistics 

that are also graphically issued during the program. 

 sample_stat Function that receives a sample of an 

image and performs a series of actions to extract its 

statistics: 

o Preserve the minimum and maximum value of the 

image array that holds the RGB values of the image 

sample. 

o Save the image type and shape. 

o Save the image label name. 

o Rgb_splitter function call - to display a graph of the 

image in RGB colors. 

o Issue a histogram to the RGB values in the image 

sample. 

o Local export and prints the statistics. 

o The function store every sample locally. 

(Figure 7,8,9,10,11 &12) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6  outputted plot of the 10 first images on cifar10 data set. 

Figure 7  example of print_batch_stat function output, 

batches 1 and 5 statistics print  

Batch1  Batch5  

Figure 8  example of batch_stat_plot function output, batches 1 

and 5 statistics plot.  
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4.3.4. DATA PREPARATION 
This part of the study was conducted on train and test data: 

4.3.4.1. DEVELOPED FUNCTIONS 
 one_hot_en  Function that accepts a batch and issues 

that batch as a new DF where the label_name attribute 

is characterized as one_hot_vector, which helps the 

model to reduce run times of every epoch  factoring 

the label names. 

 

 

 min_max_rgb  Function that gets a batch and finds for 

each row (for each image that exists within the batch) 

its minimum and maximum RGB value the min and 

max values of each image are two new attributes of each 

batch. 

 mean_r_g_b  Function that gets a batch and finds for 

each row (for each image that exists within the batch), 

the averaged R, G&B values in it  the averaged R, G&B 

values of each image are three new attributes of each 

batch. 

 prepare_x  A function that receives a batch and draws 

from it the relevant attributes (X values) for model 

training & testing. 

 prepare_y   A function that receives a batch and draws 

from it the relevant attributes (the Y values - as a 

factorial batch) for model training & testing. 

 

4.3.4.2. FLATTED ATTRIBUTES 
 In the ANN model with attributes, we would like to use 

one layer of 3072 neurons, each of which processes one 

pixel in an image consisting of 32 * 32 pixels in RGB 

colors (hence to create one layer, we will perform the 

calculation 32 * 32 * 3 = 3072).  

 We will add the five attributes we created to this model 

so that one layer of neurons will now be approximated 

from 3077 neurons describing the model. Section 4.3.6 

will review the additional functions developed to train 

the data model. 

 

4.3.4.3. THE PRODUCTS ISSUED AT THE END 

OF THE PROCESS 
 X_train_no_att - DF consists of 50K images, with 32 

pixels, arranged as a three-dimensional array for model 

training. 

 X_test_no_att - DF consists of 10K images, with 32 

pixels, arranged as a three-dimensional array to 

examine the model. 

 Y_train - an array of labels attributed to each image for 

model training 

 Y_test - A set of labels attributed to each image for 

examining the model 

 clean_X_train - DF consisting of 50K images, with 3077 

pixels (flattened attributes), arranged as a one-

dimensional array for model training. 

 clean_X_test - DF consists of 10K images, with 3077 

pixels (flattened attributes), arranged as a one-

dimensional array for examining the model. 

 Y_train_batch - DF consists of 50K images, with 10 

labels as columns, in a factorial configuration (one-hot 

vector) for model training. 

 

 

 

 

 

 

Figure 10  example of sample_stat function plotted output, 

out of test batch.  

Figure 11  example of sample_stat function printed output, out 

of train batch.  

Figure 12  example of sample_stat function printed output, 

out of test batch.  
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4.3.5.  MODELS BUILD & TRAIN 

4.3.5.1. RESEARCH PROCESS 
 a test will be performed on each model developed in 

accordance with the following guidelines: 

 After calling the model and initializing it, we will enter 

the relevant input values  X_train_no_att, 

Y_train_batch. 

 Train the model in 10 and 50 epochs. 

 epochs are the number of times the model corrects and 

maintains the values of the weights according to its 

learning rate. 

 Time measure for training the model in each training 

round. 

 Extracting prediction for the first ten images in the test 

database. 

 Print the model classification report. 

 

4.3.5.2. DEVELOPED FUNCTIONS 
1) get_ANN_model   This function creates the model 

template  and returns it according to the selected 

relevant specifications: 

The data type that enters the model is  32 * 32 * 3 

image. The model is set on three layers to classify 

the attributes in it: 

o Layer 1 - 3000 neurons, activation function - ReLu 

(normalization of negative values to zero - removal 

of exceptions)  correlated to the object volumes 

(3072 pixels). 

o Layer 2 - 1000 neurons, activation function - ReLu 

(normalization of negative values to zero - removal 

of exceptions) - division by one-third of the pixels 

training the model. 

o Layer 3 - 10 neurons, activation function - Sigmoid 

(setting values for classification) - according to the 

ten existing labels. 

o The model uses a loss function corresponding to 

categorical factor values (the Y values entering this 

model are in a One hot vector configuration). 

o The model presents the following performance 

metrics - accuracy, Precision, Recall. 

2) get_ANN_att_model  This function creates the 

model template  and returns it according to the 

selected relevant specifications: 

The data type that enters the model is a flat 

attributed image with 3077 attributes (3072 RBG 

values + 5 additional attributes).The model is set on 

three layers to classify the attributes in it: 

 

o Layer 1 - 3000 neurons, activation function - ReLu 

(normalization of negative values to zero - 

removal of exceptions)  correlated to the object 

volumes (3077 pixels). 

o Layer 2 - 1000 neurons, activation function - ReLu 

(normalization of negative values to zero - 

removal of exceptions) - division by one-third of 

the pixels training the model. 

o Layer 3 - 10 neurons, activation function - Sigmoid 

(setting values for classification) - according to the 

ten existing labels. 

o The model uses a loss function corresponding to 

categorical factor values (the Y values entering 

this model are in a One hot vector configuration). 

o The model presents the following performance 

metrics - accuracy, Precision, Recall. 

3) get_CNN_model  This function creates the model 

template and returns it according to the selected 

relevant specifications: 

The data type that enters the model is  32 * 32 * 3 

image. 

The model is set on two convolution layers to classify 

the attributes in it: 

  

o Layer 1 – 32: filters that normalize the pixel values 

to match the relevant object and classify it in the 

image. Filter size 3 * 3  randomly selected, 

activation function  ReLu (normalization of 

negative values to zero - removal of exceptions). 

o Layer 2 – 64: filters that normalize the pixel values 

(half of each pixel) to match the relevant object 

and classify it in the image. Filter size 3 * 3  

randomly selected, activation function  ReLu 

(normalization of negative values to zero - 

removal of exceptions). 

o The model is set on two pooling layers to classify 

the attributes in it: 

o Layer 1 - By maximum choice between pixel 

values in 2 * 2 configuration. 

o Layer 2 - By maximum choice between pixel 

values in 2 * 2 configuration. 

o The model is set on two flatten layers to classify 

the attributes in it:  

o Layer 1 - 64 neurons, activation function - ReLu 

(normalization of negative values to zero - 

removal of exceptions)  correlated to the 

object volumes (64 pixels  From the last 

filter). 

o Layer 2 - 10 neurons, activation function - 

SoftMax (setting values for classification) - 

according to the ten existing labels. 

o The model uses a loss function corresponding to 

categorical factor values (the Y values entering 

this model are in a One hot vector 

configuration). 

o The model presents the following performance 

metrics - accuracy, Precision, Recall. 

4) model_time A function that receives the trained 

model,  X and Y values of the trained model, and the 

desired number of epochs. The function measures the 

running time of the model training session in seconds. 
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5. RESEARCH RESULTS 

5.1. CLASSIFICATION MATRIX 
(Figure 13) 

 

5.2. PREDICTIONS & RUN TIME RESULTS 
 (Figure 14) 

 

5.3. SUMMARY 

 Ranking of the best-performing models in Classification 

Matrix indices are: 

o CNN  best accuracy (10 epochs  0.78, 50 epochs  

0.97) , recall (10 epochs  0.72, 50 epochs  0.97) and 

precision (10 epochs  0.84, 50 epochs  0.97) 

parameters after 10 and 50 epochs. 

o ANN with attributes  second best accuracy (10 epochs 

 0.5638, 50 epochs  0.9124) , recall (10 epochs  

0.9504, 50 epochs  0.9992) and precision (10 epochs  

0.1953, 50 epochs  0.1978) parameters after 10 and 50 

epochs. 

o ANN  third best accuracy (10 epochs  0.5628, 50 

epochs  0.9122) , recall (10 epochs  0.9544, 50 

epochs  0.9992) and precision (10 epochs  0.1904, 50 

epochs  0.2016) parameters after 10 and 50 epochs. 

 Ranking of the best performing models in Predictions & 

Run time indices are: 

o CNN  best run time (10 epochs  6.25, 50 epochs  

30.23) and predictions (10 epochs  90%, 50 epochs  

70%) parameters after 10 and 50 epochs. 

o ANN second best run time (10 epochs  14.57, 50 

epochs  69.55) and predictions (10 epochs  60%, 50 

epochs  90%) parameters after 10 and 50 epochs. 

o ANN with attributes third best run time (10 epochs  

14.57, 50 epochs  70.47) and predictions (10 epochs 

 50%, 50 epochs  60%) parameters after 10 and 50 

epochs. 

 

 

 

 

 

 

 

 

 

 

o As can be seen from the data appearing in this section, the 

main consideration made in ranking the models is 

according to their run times and not necessarily 

according to the ability of the model to predict the first 10 

test inputs.  
This is because the first ten inputs are not sufficient 

parameters to check the accuracy of each model. 
 

From this it can be concluded that the prediction 

calculation was performed as part of the experiment itself 

in order to verify the model's ability to analyze new test 

data inputs. 

  

6. DISCUSSION 
Based on the research analysis performed and the research 

question presented (comparison to examine the quality of the 

various models for solving a classification problem based on 

the same database  Cifar 10), the following conclusions can 

be drawn: 

 The CNN model has the best quality metrics performance 

for resolving the classification problem. 

 ANN with attributes – advantages: 

1) Adding attributes to a basic ANN model helps increase 

the model’s accuracy. 
2) Flattening the data before entering the model helps 

increase the model’s accuracy. 

 ANN with attributes – disadvantages: 

Building a model that receives flat data on high and heavy 

scales causes an increase in model run times. 

 Prediction metric - first ten images in the database  does 

not provide in-depth information about the quality of the 

model but is an indication of the machine’s ability to 

predict. 

 Limitation & future research: 

1) An in-depth study of image classification should be 

performed, with additional databases to confirm the 

study’s conclusions. 

2) The given research question should be examined in 

accordance with different research conditions 

Model Accuracy 

-10  
Epochs 

Precision 

-10  
Epochs 

Recall 

-10  
Epochs 

Accuracy 

-50  
Epochs 

Precision 

-50  
Epochs 

Recall 

-50  
Epochs 

CNN 0.7843 0.8468 0.7263 0.9701 0.9722 0.9687 

ANN with 

attributes 

0.5638 0.1953 0.9504 0.9124 0.1978 0.9992 

ANN 0.5628 0.1904 0.9544 0.9122 0.2016 0.9992 

Model Time  -

10  

Epochs 

(In 

min) 

Time  -

50  

Epochs 

(In 

min) 

10 first 

predictions–  

10 epochs 

10 first 

predictions–  

50 epochs 

CNN 6.25 30.23 90% 70% 

ANN with 

attributes  

14.57 70.47 50% 60% 

ANN 14.22 69.55 60% 90% 

Figure 13  classification matrix results. 

Figure 14  Predictions & Run time results. 
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(Operating system, Work environment, Computer 

hardware). 

3) Future research should use  cifar-100 database. 

 

7. CONCLUSION 

In this paper, we have presented a comparison between three 

different ML models on the cifar-10 database. Furthermore, 

we set new metrical parameters to check the quality of each 

model and developed new attributes for the database. 

Data exploration, normalization, visualization, and 

preparation were conducted throughout the experiment.  

The CNN models take care of the problem and the research 

question with the most efficient (program run time and 

predictions) and most practical (highest classification values) 

way in both rounds conducted on each model (50 and 10 

epochs). 

Moreover, we presented the effectiveness of adding 

attributes to the database before entering the ML model and 

also presented the effectiveness of flattening the data before 

entering the model (depending on the type of final data and 

the problem examined). 

Additionally, the significant disadvantages of adding 

attributes were presented. 

Two main limitations were described in this research: 

1) Hardware - Software Infrastructure interface. 

2) Only one database. 

We see our results as encouraging and hope they can provide 

actionable insights for future research of comparisons 

between different ML models. 
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